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1  Project Goals and Chronology 
 
This report describes our research on advanced scheduling technologies supported by the 
ARPA/Rome Lab Planning and Decision Aids (PDA) program during 1997 - 2000. At the outset, 
this project brought together Kestrel Institute and Savi Technology to develop technology for 
continuous scheduling based on highly-accurate real-time asset tracking and execution 
monitoring. The original goal was to demonstrate the benefits of combining high-quality 
logistics data with a robust scheduling capability in an operational DoD setting.  
 
Kestrel brought to bear its software synthesis technology which allows the generation of correct-
by-construction, high-performance schedulers from formal specifications of the problem they are 
intended to solve. Savi Technology, Inc. brought to bear its expertise in automatic identification 
technology and asset tracking hardware and software systems. Savi implemented numerous 
government and commercial asset visibility and tracking systems employing a wide range of 
automatic identification technologies (AIT), including bar-code, optical memory cards, smart 
cards, portable data terminals, and radio frequency identification. For example, Savi provides 
high-quality logistics data and execution monitoring for the U. S. Army and U. S. TRANSCOM 
in their Ammunition AIT project. We hoped to demo our combined results in this context. 
 
Under this contract Kestrel and Savi codeveloped a continuous scheduler for Yard Management 
Systems, based on data from the Army's Crane Ammunition Depot. The Yard Management 
System project addresses the problem of scheduling a fleet of hostlers (tractors) in a dock-side 
depot. A typical depot has various types of temporary storage areas where cargo is held for 
inspection or until it is required for loading onto a ship, train or trailer for transportation out of 
the depot. The hostlers transfer cargo between the storage areas as the status of the cargo changes 
and between the storage areas and the cranes that transfer cargo onto or off ships and trains. 
 
This demonstration system, while successful, didn't fully exploit the strengths of Kestrel's 
scheduling technology. One goal of this project was to piggyback on some of Savi's deployed 
systems to demonstrate the effectiveness of continuous scheduling in a context where Savi's 
realtime tracking technology had been deployed. As it happened, Savi's deployment schedule for 
its Ammo AIT project slipped, depriving the project of its main application domain. After 
consultation with all stakeholders, Kestrel and Rome Lab decided to terminate Savi's 
involvement and redirect Kestrel's research effort (in December 1998). 
 
The revised project had two directions: 
 

1. Support for the CAMPS project at AMC - Together with BBN and Carnegie-Mellon 
University, Kestrel developed an advanced scheduling system for AMC TACC (Air 
Mobility Command, Tanker-Airlift Operations Center) at Scott AFB. This system is 
scheduled for integration by Logicon Corporation into the CAMPS system and 
deployed in 2001. 

 
2. Support for Planware - Planware is a domain-specific generator of high-performance 

scheduling software. The goal of the Planware system is to put Kestrel's scheduler 
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synthesis technology in the hands of users who aren't specialists in formal methods. 
Using Planware, the user interactively specifies a problem and then the system 
automatically generates a formal specification and refines it. 

 
Funding problems disrupted this project in 1999. The Air Force terminated 6.3 funding service-
wide in GFY 2000, leaving this project unfinished. Rome Lab was able to find some additional 
funds to continue Kestrel's CAMPS participation until May 2000. At that point, AMC was able 
to pick up support for CAMPS MPS. 
 

2  Overview 
 
This report describes our research on the transformational development of scheduling soft- ware. 
Our approach to developing scheduling software involves several stages. The first step is to 
develop a formal model of the transportation scheduling domain, called a domain theory. 
Second, the constraints, objectives, and preferences of a particular scheduling problem are stated 
within a domain theory as a problem specification. Finally, an executable scheduler is produced 
semi-automatically by applying a sequence of transformations to the problem specification. The 
transformations embody programming knowledge about algorithms, data structures, program 
optimization techniques, etc. The result of the transformation process is executable code that is 
consistent with the given problem specification. Furthermore, the resulting code can be 
extremely efficient. 
 
We developed this transformational technology and applied it to several application areas. First, 
we focused on continuous scheduling to sit on top of the real-time tracking systems supplied by 
Savi. Our previous schedulers had all been offline batch schedulers, so we were curious to 
extend our generative technology to cover continuous scheduling. We also wanted to exploit the 
availability of real-time data about the state of the world to continuously monitor and reschedule 
activities. The YMS demonstration system described in Section 4 embodies the results of this 
effort. Second, we used our transformation system KIDS [7, 9] to generate a scheduler for one of 
the worlds most complex scheduling problems: strategic airlift scheduling at the Air Mobility 
Command at Scott AFB. This project is described in Section 5. Finally, we focused on 
incorporating our expertise in scheduler generation into a highly automated system for scheduler 
synthesis (Planware), which is described in Section 6. 
 

3  Project Results 
 
This section provides a detailed list of significant accomplishments, events, demonstrations, and 
systems developed under this project. A compact summary of the most significant achievements 
of this project is given in the Concluding Remarks section. 
 

1. YMS demonstration system - The Yard Management System project addresses the 
problem of scheduling a fleet of hostlers (tractors) in a dock-side depot. A typical 
depot has various types of temporary storage areas where cargo is held for inspection 
or until it is required for loading onto a ship, train or trailer for transportation out of 
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the depot. The hostlers transfer cargo between the storage areas as the status of the 
cargo changes and between the storage areas and the cranes that transfer cargo onto or 
off ships and trains. This system was demonstrated at the May 1998 and October 1998 
PDA workshops. 

 
2. Planware - A working version of Planware was developed and demonstrated 

extensively at workshops. Among the key developments are 
 

(a)   Constraint Acquisition - We developed a new tabular format for acquiring 
scheduling problem requirements. This result enabled a much richer means for 
interactively getting user input on the scheduling problem at hand, without 
requiring users to read or write formal specifications. 

 
(b)   Colimits of Diagrams - Another key technical result was the development and 

implementation of colimits of diagrams, which enabled us to provide precise sup- 
port for composing structured representations of knowledge. We believe that this 
result is a major mathematical advance with respect to knowledge representation 
and processing, far transcending our particular application to program synthesis. 
We use colimits of diagrams to provide better support for design-by-classification, 
embodied in Planware's substrate called Designware (for more details, see [6, 5]). 
We applied for a patent on this operation. 

 
(c)   Constraint Propagation Theory - We developed and implemented a generalized 

theory of constraint propagation that subsumes earlier forms of constraint 
propagation (and-constraints) and global search (or-constraints). 

 
3. CAMPS Mission Planning System (MPS) - We developed version 0.5 of MPS which 

was released at the end of the project. This version included basic scheduling of 
aircraft loading and routing, aircrews, and mog at enroute ports, as well as many other 
features required for deliberate airlift planning. 

 
4. Publications 

Lee Blaine, Limei Gilham, Junbo Liu, Douglas R. Smith, and Stephen Westfold, 
Planware - Domain-Specific Synthesis of High-performance Schedulers, Proceedings 
of the Thirteenth Automated Software Engineering Conference, IEEE Computer 
Society Press, Los Alamitos, California, October, 1998, 270-280. 

 
Smith, D.R., Mechanizing the Development of Software, in Calculational System De- 
sign, Proceedings of the NATO Advanced Study Institute, Eds. M. Broy and R. Stein- 
brueggen, IOS Press, Amsterdam, 1999, 251-292. 

 
Smith, D.R., Designware: Software Development by Refinement, invited paper in 
Proceedings of the Eighth International Conference on Category Theory and 
Computer Science, Edinburgh, September, 1999. 

 
Westfold, S.J. and Smith, D.R., Synthesis of Efficient Constraint Satisfaction Pro- 
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grams, Knowledge Engineering Reviews, Special Issue on AI and OR, 2001. 
 

5. Patents - We applied for a patent on diagrams of colimits: 
D. Pavlovic, J. Liu, and D.R. Smith, Method and Apparatus for Determining Colimits 
of Hereditary Diagrams, patent application submitted September 1999. 

 
6. Project-related Presentations, Meetings and Events - Unless otherwise specified, Dr. 

Smith participated in each item below. 
 

 CAMPS meeting, Scott AFB, 20 May 97. 
 ARPI Annual Workshop, Lynnfield, MA, 9-12 June 1997; Dr. Smith received the Guns 

and Butter Award from the DARPA Program Manager for “basic research and a solid 
record of successful transitions to ARPI customers”. Dr Smith gave an invited talk 
entitled “Domain-Specific System for Synthesizing High-Performance Schedulers"; Dr. 
Smith gave demos of Planware and KIDS; Dr. Smith also gave a talk entitled “Synthesis 
of Real-Time Schedulers". 

 Interview with SAAM and Contingency & Exercise mission planners, AMC HQ, Scott 
AFB, 29 September 97. 

 CAMPS meeting, Logicon HQ, San Pedro, CA, 27-28 October 1997. 
 PDA Workshop, San Francisco, 4-6 Nov 97. 
 CAMPS meeting, interview with SAAM and Contingency & Exercise mission planners, 

AMC HQ, Scott AFB, 3 December 97. 
 visited MTMC HQ, Falls, Church, VA to discuss KI/Savi scheduling of yard 

management at Sunny Point. Attending: Col Larry Curtin, Col Morrow, Dan Monahan, 
16 January 1998. 

 Talk and Demo of CAMPS Mission Planner, Logicon Office, Scott AFB, 28 January 
1998. 

 Visited Sunny Point, NC to interview MOTSU personnel, 17-18 Feb 98. Result was 
hostility to Kestrel/Savi participation in an application effort, so we looked elsewhere. 

 CAMPS meeting, Kestrel, 4 Mar 98 
 CAMPS meeting, Logicon HQ, San Pedro, 5 Mar 98 
 CAMPS demos and discussions, Logicon at Scott AFB, 28-29 Apr 98. 
 DARPA ISO meeting, Monterey, CA, 4-5 May 98. Presentation of the Yard Management 

System, CAMPS, and Planware at ARPI Annual meeting, Monterey, CA, 6-7 May 1998. 
 CAMPS meeting, Logicon HQ, San Pedro, 19-20 May 98 (Tom Emerson attended)  
 PDA program review at Kestrel with Al Frantz, 25 Jun 98. 
 Talks on Planware and category theory applied to software refinement, Air Force Rome 

Lab, Rome, NY, 2 Sept 98. 
 Tutorial on Designware and paper on Planware, Automated Software Engineering, 13-16 

Oct 98, Honolulu, HI. 
 Talks and demos on Planware, CAMPS, and Continuous Scheduling Architecture, ARPI 

meeting, Arlington VA, 27-29 Oct 98. 
 CAMPS meeting, AMC, Scott AFB, 17-19 Feb 99. 



 

 

 

5

 Project review, PDA, John Lemmer, 30 Apr 99 
 Meeting on USAF Common Scheduler Project, ESC, Hanscom AFB, Bedford, MA, 21 

May 99. 
 Invited Talk, \Software Development by Mechanized Refinement", Workshop on 

Language, Logic, and Computation, CSLI, Stanford University, 29 May 1999. 
 Meeting on ESC Common Scheduler Project, at Kestrel, 12 Aug 99. Attending were 

Frank LaMonica and John Lemmer (AFRL), Russ Graves (MITRE & ESC), and Kestrel 
personnel. 

 Invited Talk, Designware, Eighth International Conference on Category Theory and 
Computer Science (CTCS 99), Univ. Edinburgh, UK, 10-12 September 1999. 

 talk on Planware, and CAMPS demo, ARPI/PDA Workshop, Arlington VA, 14-15 
September 1999. 

 Invited Talk, CS Colloquium, Cornell University, 30 Sept 99. 
 Invited talk on Designware, High Integrity Systems Conference, Albuquerque, NM, 14-

17 Nov 99. 
 Invited talk on Planware, to Air Force Scientific Advisory Board, AFRL, Rome, NY, 7-8 

Dec 99. 
 CAMPS meeting, Kestrel, 13-14 April 2000. 
 CAMPS meeting, Logicon Scott office, O'Fallon, IL, 11-12 May 2000. 
 BBN, Cambridge, MA, CAMPS work, 2 Jun 00 
 CAMPS RAD/JAD, alpha release of CAMPS MPS, Logicon Scott, 27-28 Jun 00 

 

4  Real-time Tracking and Continuous Scheduling 
 
The Yard Management System project addresses the problem of scheduling a fleet of hostlers 
(tractors) in a dock-side depot. A typical depot has various types of temporary storage areas 
where cargo is held for inspection or until it is required for loading onto a ship, train or trailer for 
transportation out of the depot. The hostlers transfer cargo between the storage areas as the status 
of the cargo changes and between the storage areas and the cranes that transfer cargo onto or off 
ships and trains. 
 
The objective in scheduling the fleet of hostlers is to reduce the loading and unloading times of 
ships and potentially to achieve acceptable loading and unloading times with fewer hostlers. The 
main difficulty in constructing an optimal schedule is that the number of schedules for any given 
set of cargo movements is exponential in the number of movements: for even moderately large 
numbers of movements, it is infeasible to try every possible schedule. 
 
One solution is to compute lower bounds on the completion time for schedules and use this 
information to prune from the schedule search space schedules that could not possibly be 
optimal. The lower bound computations typically require much less time than would the 
construction of the schedules themselves. Furthermore, a given lower bound computation 
typically applies to a large number of schedules (derived from a common, partially constructed 
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schedule) all of which may be pruned. Lower bound computations can thus make the 
construction of an optimal schedule feasible. 
 
The YMS system 
 
We developed a prototype YMS system that provides continuous scheduling of logistics 
operations by means of near-real time asset visibility data, sentinels and monitoring code, 
continuous scheduling engine, and an execution manager (see Figure 1). 
 
We describe the various components of this architecture below. The components are processes 
running concurrently on a Unix workstation, and communicating via CORBA middleware 
infrastructure. 
 
Savi Asset Manager 
 
The Savi Asset Manager provides near-real time asset data acquisition based on automatic 
identification technologies. The asset data is gathered in various distributed and central locations. 
 
Scheduling Server 
 
The scheduling engine transforms the available resources, delivery requirements, and domain 
constraints into a schedule for logistics operations. Several rescheduling algorithms are available 
- global reschedulers for times when it is more important to reoptimize the schedule than to 
minimize change, and local reschedulers when minimizing change is desirable. We anticipate 
supporting user-specifiable degrees of optimization versus change in the scheduling server. The 
scheduling engine has the ability to determine sensitive events or combination of events that 
could require rescheduling operations. Under the control of user-specified parameters and other 
forms of guidance, the scheduling server automatically generates sentinels to watch for particular 
events. 
 
Execution Manager 
 
The execution manager provides situation visibility and control to the user, and mediates the 
activities of the data tracking system and the scheduling server. 
 
Visibility and control: The status of the assets is provided via direct access to the data center. The 
Schedule viewer provides a view of the scheduled logistics operations, for a record of recent 
changes to the logistics operations, and information about the capabilities, delivery requirements, 
and constraints. The Sentinel Status view provides information of currently active sentinels and 
previously triggered sentinels. The user specifies which sentinels to generate and how. The user 
can also choose from a range of rescheduling tools and tool guidance following notification of a 
need to reschedule from a sentinel. 
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Figure 1: Continuous Scheduling Architecture 
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Mediating the tracking system and scheduler: Sentinels are executed by an interpreter in the 
execution engine that creates a process that watches (active sentinel) for a given set of events. 
The sentinel remains active until the events happen or the sentinel is canceled or replaced. If a 
sentinel event occurs, the execution manager notifies the user and may trigger the replanning 
operation. 
 
Kestrel researchers constructed a domain theory for the YMS scheduler that models the typical 
operation of a depot and containing algebraic laws that permit the automated derivation of lower 
bound functions suited to the depot (See Appendix A). Furthermore, the domain theory contains 
laws that permit the automated instantiation of various algorithm theories such as global search, 
local search and greedy heuristic algorithms. Instantiation of these theories would produce a 
family of schedulers having various degrees of compromise between scheduler execution time 
and the quality of the schedules produced (not all of the schedulers will produce optimal 
schedules). The family of schedulers would also contain real-time reschedulers which use 
information provided by real time tracking systems to adjust schedules as they are executed to 
account for deviations between predicted and actual performance. 
 
Successful demonstrations of the YMS system were given at the ARPI workshops in May 1998 
and October 1998. 
 

5  CAMPS Mission Planning System 
 
This section provides a brief overview of the algorithm underlying the Mission Planner in 
CAMPS. The MPS algorithm operates on level 2 TPFDD data and generates mission plans over 
nominal aircraft and crews. The MPS tracks and constrains the following kinds of resources in 
constructing a mission plan: (1) aircraft, (2) crews and their duty days, (3) parking mog, (4) 
working mog, (5) runways (takeoff and landing separations), (6) port operating hours. Currently, 
fuel supplies at ports are tracked but not constrained. 
 
The MPS algorithm essentially iterates over movement requirements which are sorted by 
increasing LAD primarily. 
 

1. The main control loop: 
For each movement requirement (MVR), the algorithm attempts to move it in the 
context of previously planned missions. First, the algorithm tries to place the MVR on 
existing mission provided that (1) it has capacity, (2) the mission route includes the 
POE and POD, (3) the mission is feasible with respect to the ALD, EAD and LAD of 
the MVR. If an existing mission cannot (fully) carry the MVR, then the algorithm will 
attempt to create a new mission. 

 
2. Creating a new mission: 

Given MVR, we first look ahead in the list of unscheduled movement requirements to 
find those that could be coallesced with it; in particular, we look for requirements from 
the same (or a nearby) POE with a similar ALD that are going to the same POD. If 
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enough cargo (or PAX) can be found to justify a new mission (according to a 
minimum threshold per MDS), then a route generator is called to produce a candidate 
list of available aircraft and routes. Route generation includes positioning from the 
current location of the aircraft to the POE, travel through enroutes (including possible 
AR stops) to the POD, followed optionally by depositioning to a recovery base. For 
each leg of the mission, the algorithm generates choices of (1) crew and whether the 
crew flies the leg in their current duty or the next, (2) base open hours interval for 
departure, (3) takeoff position (to enforce takeoff separations), (3) base open hours 
interval for arrival, and (4) landing position (to enforce landing separations). If mog 
bounds are specified for ports along the route, then parking mog and working mog are 
tracked and the constraints are enforced. 

 
The Mission Planner is based on constraint propagation technology. See [9] for more details 
about the nature and design of constraint-based algorithms for scheduling. One key feature of our 
approach is to use time windows for every temporal decision; in particular during scheduling, the 
departure time of every flight is given by a time window - an earliest departure time and a latest 
departure time. When the departure times of flights must be coordinated, for example, by 
enforcement of a minimum separation between takeoffs at a port, then a dependence constraint is 
asserted between flights so that the earliest departure time of one flight is, say, at least 15 
minutes before the earliest departure time of another flight departing from the same station. If the 
departure time of the first flight must be delayed, then the asserted constraint will cause the 
earliest departure time of the second flight to be delayed if necessary to enforce the minimum 
takeoff separation. In this scenario a change to the time window of one flight is propagated 
through the takeoff separation constraint to cause a change to the time window of the second 
flight - an example of constraint propagation. 
 

6  Planware 
 
This section presents an overview of Planware, a generator of high-performance scheduling 
algorithms, currently being developed at Kestrel Institute. Our aim is to convey a sense of the 
rationale for Planware, the design process that it supports, the architecture of the current 
Planware system, and our results to date. The reader may find more detail in the references.  
 
Architecturally, Planware is an extension of the Specware system [10], a system for developing 
formal specifications and refinements based on concepts from higher-order logic and category 
theory. Planware and Specware embody theoretical developments stemming from Kestrel's 
experience with previous systems, such as KIDS [7] and DTRE [2]. 
 
The goal of Planware is to allow experts in planning and scheduling to assemble quickly a 
specification of a scheduling problem, and to generate automatically a high-performance 
scheduler from it. The user's interactions with the system are designed to be entirely in the 
scheduling domain { the user does not need to read or write formal specifications, nor to   
understand the logical and category-theoretic foundations of the system. We have invested 
substantial effort in automating the construction of scheduling domain theories. 
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Figure 2: Taxonomy of Resource Theories 
 
To assemble a requirement specification and underlying domain theory, Planware requires 
very little information from the user: 
 

1. to select from a taxonomy of resource theories the particular kind of resource against 
which to schedule the tasks (See Figure 2) 

 
2. to modify a spreadsheet-like table of expressions that provide bounds on the various 

attributes of reservations of the selected resources (See Figure 3). 
 
From this minimal amount of information, Planware can automatically 
 

 generate a formal specification of the scheduling problem (plus the relevant background 
concepts that comprise a domain theory), 

 reformulate the specification using datatype refinements to build some of the problem 
constraints directly into the schedule datatype, allowing a dramatic simplification of the 
specification, 

 apply domain-independent knowledge about designing global search (backtracking) 
algorithms with constraint propagation, 

 apply datatype refinements and optimization techniques, and finally 
 generate Common Lisp code. 
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Figure 3: Spreadsheet-like Interface for Acquiring Scheduling Constraints 

 
For example, after design and refinement, the specification of a transportation scheduling domain 
comprises about 10,000 lines of text of which about 3000 lines are the scheduling algorithm (the 
remainder consists of axioms and datatype operations that are not needed by the running 
scheduler). 
 
A key point here is that the high level of automation in Planware is achieved by applying 
domain- specific control (via a hand-built tactic): 
 

1. to construct a problem specification and domain theory, 
 
2. to apply a series of domain-independent design theories and code-generation rules. The 

result is a fast, correct, executable scheduler automatically constructed from the user's 
description of a scheduling problem. 

 
We believe that Planware is a new paradigm for domain-specific software generators. Planware 
differs from other domain-specific software generators in that it is built on a foundation of 
domain-independent general-purpose software specification and synthesis capabilities 



 

 

 

12

(Specware/Designware). In particular, Planware relies on 
 

1. the Specware capabilities for composing specifications, refining them and translating 
to code (especially colimits of diagrams); 

 
2. the Designware libraries of domain-independent design knowledge about algorithms, 

datatype refinements, and expression optimization techniques (and their application 
tactics) to construct refinements. 

 
The domain-specificity of Planware comes in the form of 
 
specifications of domain knowledge - the abstract scheduling specification, the taxonomies of 

task and resource theories, etc. 
 
scheduling spec construction tactics - tactics for lifting properties of tasks to constraints on the 

scheduler, tactics for lifting resource constraints to scheduling constraints, tactics for 
constructing the constructors and other datatype operations needed by the refined Task, 
Resource, Reservation, and Schedule specs, 

 
embeded algorithm design tactic - tactics for generating a global search theory for the 

scheduling problem at hand, etc. 
 
The background of domain-independent design knowledge allows a user to derive software even 
when the requirements fall outside the domain-specific scope of the system. The user then gets 
less automation, and must supply more guidance in the construction process.  
 
There are many things to be done before Planware can be deployed. One crucial extension is 
allowing the user more flexibility in supplying task information. We are developing a 
spreadsheet-like interface that is derived from the user's choice of resource theory and presents 
the user with plausible options for lower/exact/upper bounds on all crucial attributes of a 
reservation for that kind of resource. We are working to let the user choose and modify arbitrary 
entries. As before the user only interacts with the system in domain-specific terms. Another vital 
extension is to generalize the abstract scheduling spec to multiple resource classes. Another 
extension that is underway is to extend Planware to allow the synthesis of scheduling systems, 
including visual displays, editors, GUI, database mediators, and so on. 
 
See [1] for more details and an example of Planware in action. 
 

7  Concluding remarks 
 
This project enabled us to show the flexibility of our specs-to-code technology as applied to a 
range of scheduling problem types: continuous scheduling, large-scale complex airlift 
scheduling, and highly-automatic scheduler generators. We expect each of these areas to 
continue to develop and to result in improved products for DoD needs. 
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Summing up, this project has led to theoretical breakthroughs, direct application support for the 
US Air Force, and business opportunities in technology transfer: 
 

1. Fundamental Breakthroughs in Software Synthesis Technology - 
 

 Diagram Colimit - This is a fundamental tool for automatically composing knowledge 
structures. Our belief in the long-term criticality of this operation is reflected in our 
applying for a patent on it. 

 
 Planware - Planware is a new paradigm for domain-specific software generators. 

Planware differs from other domain-specific software generators in that it is built on a 
foundation of domain-independent general-purpose software specification and 
synthesis capabilities (e.g. the diagram colimit operation in Specware/Designware). 
Our discovery of the tabular spreadsheet-like format for acquiring problem 
requirements was a significant breakthrough in the Planware interface. It is 
paradigmatic of how a simple domain-specific specification interface can be built on 
the basis of a clear mathematical model of a class of problems. 

 
2. Application Support for the US Air Force - CAMPS MPS is the next-generation scheduling 

system at the TACC at AMC, Scott AFB. It provides speed and scheduling capabilities far 
beyond AMC's current tools. MPS' support for hub-and-spoke operations may enable a radical 
change in AMC airlift operations strategy. 

 
3. Tech Transfer and Business Opportunities - Planware as a generator (vending machine) of 

schedulers has generated commercial interest. Kestrel Technology (a for-profit LLC started 
recently to develop and transfer Kestrel Institute technologies) has won an SBIR to develop 
Planware into a commercially viable tool. We also anticipate that Kestrel Technology will 
provide long-term maintenance support to AMC for CAMPS MPS, and will be looking for 
other opportunities for developing variants of MPS for the US Air Force. 
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Appendix A  Theories 
 
A YMS Theories 
 
This appendix details the KIDS theories for the Yard Management System scheduler. A brief 
summary of the theories is presented below, followed by the full text of the theories.  
 

Cargo A simple ADT representing a cargo item. 
 
Slot The various types of storage area in a yard (bunkers, loading bays, etc.) are uniformly 

represented as 'slots'. 
 
Movement Request This ADT represents a task for the hostlers in the form of an item of 

cargo to be moved from a source slot to a destination slot. Some additional information, 
such as the distance between source and destination fields is cached for efficiency in 
computing metrics on schedules. 

 
Ship Manifest This represents a partial order on movement requests that arises from 

physical restrictions on loading and unloading ships. The movement requests are 
categorized into numbered strata such that all movement requests in a given strata must 
be accomplished before any movement requests from higher-numbered strata, but there 
is no ordering on the movement requests within a single strata. 

 
Geometry The geometry of a yard is represented essentially as a graph of distances 

between slots. The graph is directed to allow for asymmetric routes (e.g., one-way 
roads). 

 
Hostler The Hostler theory defines an ADT to represent individual hostlers and their 

properties; e.g., their speed and turn-around times. 
 
Yard A Yard represents a single physical scheduling site: its geometry (slots and the 

distances between them) and resources (hostlers). 
 
Reservation A reservation represents the assignment of a hostler to satisfy a particular 

movement request during a particular time period. 
 
Schedule A schedule represents the assignments of all hostlers over a certain time period. 

Conceptually, a schedule is a set of reservations. 
 
Work Metric The work metric is used to assess schedules both in gauging the quality of a 

schedule and in computing lower bounds on completions of partial schedules (these 
lower bound are used for pruning searches). The work represented in a schedule in 
based on productive work (cargo moved) and unproductive work (repositioning of 
hostlers between cargo movements). 
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YMS Theory This theory defines feasibility on hostler schedules. The primary 
components of feasibility are: the ordering on cargo movements is respected; each 
reservation is long enough for its cargo movement to be accomplished; successive pairs 
of reservations for a given hostler are sufficiently separated to allow for repositioning of 
the hostler; the schedule does not allocate more hostlers than are available in the yard. 

 
Global Search with Pruning This theory defines an algorithm schema for performing 

global search with pruning based on a lower bound on the costs of all schedules in a 
given branch of the search space. The schema includes a parameter that allows the 
quality of the final schedule to be specified in terms of deviation from true optimality 
(e.g., 'within 5% of optimal'). Reducing the quality even slightly from strict optimality 
can dramatically reduce the size of the search space. The theory also shows how the 
search can be initialized with a schedule generated by a quick but non-optimizing 
heuristic scheduler to further reduce the size of the search space. 

 
Greedy Append for Earliest Finish This theory is an example of a greedy heuristic 

scheduler that can be used to initialize the pruning global search scheduler. It is based 
on constructing reservations to minimize the finishing time for some movement request 
chosen at random from the head of the manifest (such that the ordering of the 
movement requests is respected). 

 
 
A.1 Cargo 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Represents an item of cargo. 
 
THEORY CARGO 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {} 
 
% ---------------------------------------- 
 
THEORY-TYPE-PARAMETERS {} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
 
type cargo-id = symbol 
type cargo-type = symbol 
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type cargo = tuple(id: cargo-id, cargo-type: cargo-type) 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function cg-make(id: cargo-id, cargo-type: cargo-type): cargo 

= <id, cargo-type> 
 
function cg-id(c: cargo): cargo-id 

= c.id 
 
function cg-type(c: cargo): cargo-type 

= c.cargo-type 
 
END-THEORY 
 
 
A.2 Slot 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Represents a "slot" (hostler berth) in a yard. 
THEORY SLOT 
 
% ---------------------------------------- 
THEORY-TYPES 
 
type slot-id = fixnum 
type slot-name = symbol 
type slot = tuple(id: slot-id, name: slot-name) 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function sl-make(id: slot-id, name: slot-name): slot 

= <id, name> 
 
function sl-id(s: slot): slot-id 

= s.id 
 
function sl-name(s: slot): slot-name 

= s.name 
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END-THEORY 
 
 
A.3 Movement Request 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Represents a request to move cargo. 
 
THEORY MOVEMENT-REQUEST 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {SLOT, CARGO, GEOMETRY} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
 
type mvr = tuple(source: slot-id, 

 destination: slot-id, 
 
cargo: cargo, 
tag: fixnum, 
dist: distance, 
load: fixnum) 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
 
function mvr-make(s: slot-id, d: slot-id, c: cargo): mvr 

= <s, d, c, undefined, undefined, undefined> 
 
function mvr-source(m: mvr): slot-id 

= m.source 
 
function mvr-destination(m: mvr): slot-id 

= m.destination 
 
function mvr-cargo(m: mvr): cargo 

= m.cargo 
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function mvr-set-tag(m: mvr, tag: fixnum): mvr 
= <mvr-source(m), 

mvr-destination(m), 
mvr-cargo(m), 
tag, 
m.dist, 
m.load> 

 
function mvr-tag(m: mvr): fixnum 

= m.tag 
 
function mvr-compute-distance(m: mvr, g: geo): mvr 

= let(s: slot-id = mvr-source(m), 
d: slot-id = mvr-destination(m)) 

let(dist: distance = geo-distance(g, s, d)) 
<s, d, mvr-cargo(m), mvr-tag(m), 
dist, 
(dist div *LOADED-HOSTLER-SPEED* + *TRIP-DURATION-OVERHEAD*)> 

 
function mvr-distance(m: mvr, g: geo): distance 

= if defined?(m.dist) 
then m.dist 
else geo-distance(g, mvr-source(m), mvr-destination(m)) 

 
function mvr-cached-distance(m: mvr): distance 

= m.dist 
 
function mvr-load(m: mvr): fixnum 

= m.load 
 
% ---------------------------------------- 
 
THEORY-LAWS 
 
assert mvr-source-and-destination-different 

fa(mvr) mvr-source(mvr) ~= mvr-destination(mvr) 
 
END-THEORY 
 
 
A.4 Ship Manifest 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
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THEORY SHIP-MANIFEST 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {TIME-AND-DISTANCE, MOVEMENT-REQUEST} 
 
% ---------------------------------------- 
 
THEORY-TYPE-PARAMETERS {} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
 
type rank = fixnum 
type repo-map = tuple(index: seq(fixnum), 

distances: seq(distance)) 
type manifest = tuple(rank: fixnum, 

loaded: set(mvr), 
unloaded: set(mvr), 
unloaded-distance: distance, 
repo: repo-map 
) 

 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
 
function man-make-empty(): manifest 

= <0, {}, {}, 0, undefined> 
 
function man-rank(man: manifest): fixnum 

= man.rank 
 
function man-add-stratum(man: manifest, mvrs: set(mvr)): manifest 

= let(rank = man-rank(man)+1) 
<rank, 

man.loaded, 
(man.unloaded union 

image(lambda(m: mvr) mvr-set-tag(m, rank), mvrs)), 
undefined, 
undefined> 

 
function man-loaded(man: manifest): set(mvr) 

= man.loaded 
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function man-unloaded(man: manifest): set(mvr) 

= man.unloaded 
 
function man-finished?(man: manifest): boolean 

= man-unloaded(man) = {} 
 
function man-rank-of-mvr(man: manifest, m: mvr): fixnum 

= mvr-tag(m) 
 
function man-mvr-less?(man: manifest, mvr1: mvr, mvr2: mvr): boolean 

= mvr-tag(mvr1) < mvr-tag(mvr2) 
 
function man-mvr-has-been-loaded?(man: manifest, mvr: mvr): boolean 

= mvr in man-loaded(man) 
 
function man-remove-mvr-from-distance-map(man: manifest, done: mvr) 

: repo-map 
= if not(defined?(man.repo)) 

then undefined 
else <man.repo.index, 

seq-shadow1(man.repo.distances, mvr-tag(done), 0)> 
 
function man-mark-mvr-loaded( 

man: manifest, mvr: mvr | mvr in man-unloaded(man) 
): manifest 
= (<man.rank, 

(man.loaded with! mvr), 
(man.unloaded less! mvr), 
(man.unloaded-distance - mvr-load(mvr)), 
man-remove-mvr-from-distance-map(man, mvr)>) 

 
function man-head(man: manifest): set(mvr) 

= let(min-rank: fixnum 
= min-i(image(lambda(m:mvr) man-rank-of-mvr(man, m), 

man-unloaded(man)))) 
filter(lambda(m: mvr) man-rank-of-mvr(man, m) = min-rank, 

man-unloaded(man)) 
 
function man-tail(man: manifest): set(mvr) 

= let(min-rank: fixnum 
= min-i(image(lambda(m:mvr) man-rank-of-mvr(man, m), 

man-unloaded(man)))) 
filter(lambda(m: mvr) man-rank-of-mvr(man, m) > min-rank, 

man-unloaded(man)) 
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function man-refined?(man1: manifest, man2: manifest): boolean 
 
function man-compute-unloaded-distance(man: manifest, g: geo) 

: manifest 
= let(new-unloaded: set(mvr) = 
image(lambda(m: mvr) mvr-compute-distance(m, g), man-unloaded(man))) 

let(dist: distance = 
reduce(+, image(mvr-load, set-to-seq(new-unloaded)))) 

<man.rank, man.loaded, new-unloaded, dist, man.repo> 
 
function man-unloaded-distance(man: manifest): distance 

= man.unloaded-distance 
 
function man-mvrs-in-order(man: manifest): seq(mvr) 

= if man-finished?(man) 
then [] 
else 

let(m: mvr = arb(man-head(man))) 
prepend(man-mvrs-in-order(man-mark-mvr-loaded(man, m)), m) 

 
function man-find-closest-mvr(m: mvr, s: seq(mvr), i: fixnum, g: geo) 

: tuple(mvr, distance, mvr) 
= if i=size(s) 

then <m, 0, undefined> 
elseif i=size(s) - 1 
then <m, 

geo-distance(g, mvr-destination(m), mvr-source(last(s))), 
last(s)> 

else 
let(md: tuple(mvr, distance, mvr) 

= reduce(lambda(x: tuple(mvr, distance, mvr), 
y: tuple(mvr, distance, mvr)) 

if x.2<=y.2 then x else y, 
image(lambda(j) 

<m, 
geo-distance(g, mvr-destination(m), mvr-source(s(j))), 
s(j)>, 

[i+1 .. size(s)]))) 
md 

 
function man-find-closest-mvrs-aux(todo: seq(mvr), g: geo, 

done: seq(mvr), chosen: map(mvr, set(mvr)), 
closests: seq(tuple(mvr, distance, mvr)) 
): seq(tuple(mvr, distance, mvr)) 
= if empty(todo) 

then closests 
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else 
let(next: mvr = first(todo)) 
let(candidates: seq(tuple(distance, mvr)) 

= [ <d,m> | (m: mvr, d: distance) 
m in done 

& (m in domain(chosen) 
=> fa(c: mvr)(c in chosen(m) 

=> mvr-destination(c) ~= mvr-destination(next))) 
& d = geo-distance(g, mvr-destination(next), mvr-source(m)) ]) 

let(dc: tuple(distance, mvr) 
= reduce(lambda(dm1: tuple(distance, mvr), 

dm2: tuple(distance, mvr)) 
if dm1.1<=dm2.1 then dm1 else dm2, 
candidates)) 

let(choice: mvr = dc.2, 
dist: distance = dc.1) 

man-find-closest-mvrs-aux( 
rest(todo), 
g, 
append(done, next), 
chosen 

+* {| choice -> if defined?(chosen(choice)) 
then chosen(choice) with next 

else {next} |}, 
prepend(closests, <next, dist, choice>)) 

 
function man-find-closest-mvrs(mvrs: seq(mvr), g: geo) 

: seq(tuple(mvr, distance, mvr)) 
= let(rev: seq(mvr) = reverse(mvrs)) 

let(m: mvr = first(rev)) 
let(e = <m, 0, undefined>) 
man-find-closest-mvrs-aux(rest(rev), g, [m], {| |}, [e]) 

 
function man-compute-closest-sources(man: manifest, g: geo): manifest 

= let(mvrs: seq(mvr) = man-mvrs-in-order(man)) 
let(closest: seq(tuple(mvr, distance, mvr)) 

= man-find-closest-mvrs(mvrs, g)) 
let(sorted: seq(tuple(mvr, distance, mvr)) 

= sort(copy-list(closest), 
lambda(x: tuple(mvr, distance, mvr), y: tuple(mvr, distance, mvr)) 

x.2>=y.2)) 
let(index: seq(fixnum) 

= image(lambda(x: tuple(mvr, distance, mvr)) mvr-tag(x.1), sorted)) 
let(distances: seq(distance) 

= image(lambda(x: tuple(mvr, distance, mvr)) x.2, closest)) 
(<man.rank, man.loaded, man.unloaded, man.unloaded-distance, 
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<index, distances>>) 
 
function smaller-i(x: fixnum, y: fixnum): fixnum 

= if x<y then x else y 
 
function sum-n-non-zeros(s: seq(distance), index: seq(fixnum), 

n: fixnum, pos: fixnum, total: distance 
): distance 

= if pos>size(index) or n=0 
then total 
elseif s(index(pos)) = 0 
then sum-n-non-zeros(s,index, n, pos+1, total) 
else sum-n-non-zeros(s, index, n - 1, pos+1, total+s(index(pos))) 

 
function man-repositioning-lower-bound(man: manifest, Y: yard) 

: distance 
= reduce(+, man.repo.distances, 0) 

- sum-n-non-zeros(man.repo.distances, man.repo.index, 
smaller-i(size(y-hostler-ids(Y)) - 1, 

size(man.repo.index)), 
1, 0) 

 
% ---------------------------------------- 
 
THEORY-LAWS 
 
assert man-head-and-tail-disjoint 

fa(m) man-head(m) intersect man-tail(m) = {} 
 
assert man-head-and-tail-cover-unloaded 

fa(m) man-head(m) union man-tail(m) = man-unloaded(m) 
 
assert man-equivalence-of-loaded-and-mvr-has-been-loaded 

fa(m) man-loaded(m) 
= { mvr | (mvr) man-mvr-has-been-loaded?(m, mvr) } 

 
assert man-loaded-and-unloaded-are-disjoint 

fa(m) man-loaded(m) intersect man-unloaded(m) = {} 
 
assert man-mvrs-in-head-are-not-pre-ordered-1 

fa(m, mvr1, mvr2) 
mvr1 in man-head(m) & mvr2 in man-head(m) 

=> man-mvr-less?(m, mvr1, mvr2) = false 
 
assert man-mvrs-in-head-are-not-pre-ordered-2 

fa(m, mvr1, mvr2) 
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mvr1 in man-head(m) & mvr2 in man-head(m) 
=> man-mvr-less?(m, mvr2, mvr1) = false 

 
assert man-mvrs-in-head-preorder-mvrs-in-tail 
fa(m, mvr1, mvr2) 
mvr1 in man-head(m) & mvr2 in man-tail(m) 
=> man-mvr-less?(m, mvr1, mvr2) 
 
assert man-mvrs-in-tail-do-not-preorder-mvrs-in-head 

fa(m, mvr1, mvr2) 
mvr1 in man-head(m) & mvr2 in man-tail(m) 

=> man-mvr-less?(m, mvr2, mvr1) = false 
 
assert man-mark-loaded-refines-manifest 

fa(m, mvr) 
mvr in man-unloaded(m) 

=> man-refined?(m, man-mark-mvr-loaded(m, mvr)) 
 
assert man-refinement-preserves-loaded-status 

fa(m1, m2, mvr) 
man-refined?(man-mark-mvr-loaded(m1, mvr), m2) 

=> man-mvr-has-been-loaded?(m2, mvr) 
 
assert man-mark-loaded-implies-has-been-loaded 

fa(m, mvr) 
mvr in man-unloaded(m) 

=> man-mvr-has-been-loaded?(man-mark-mvr-loaded(m, mvr), 
mvr) 

 
END-THEORY 
 
 
A.5 Geometry 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
% Represents the geometry of a yard. 
 
THEORY GEOMETRY 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {SLOT, TIME-AND-DISTANCE} 
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% ---------------------------------------- 
 
THEORY-TYPES 
 
type geo = tuple(distances: seq(seq(distance)), 

count: fixnum) 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function geo-make-empty(): geo 

= <[], 0> 
 
function geo-next-number(g: geo): integer 

= g.count + 1 
 
function geo-add-slot(g: geo, name: slot-name): tuple(geo, slot) 

= let(new-dists: seq(seq(distance)) 
= append(image(lambda(s) append(s, *undefined*), g.distances), 

[ *undefined* | (i) i in [1 .. geo-next-number(g)]])) 
<<new-dists, geo-next-number(g)>, 

sl-make(geo-next-number(g), name)> 
 
function geo-add-assymetric-separation(g: geo, 

src: slot-id, des: slot-id, dist: distance 
): geo 
= let(new-dist: seq(seq(distance)) = 
seq-shadow1(g.distances, src, 

seq-shadow1(g.distances(src), des, dist))) 
<new-dist, g.count> 

 
function geo-add-separation(g: geo, 

src: slot-id, des: slot-id, dist: distance 
): geo 
= geo-add-assymetric-separation( 

geo-add-assymetric-separation(g, src, des, dist), 
des, src, dist) 
 
function geo-slot-ids(g: geo): set(slot-id) 

= {1 .. g.count} 
 
function geo-distance(g: geo, src: slot-id, des: slot-id 

| src in geo-slot-ids(g) 
& des in geo-slot-ids(g) 
): distance 

= g.distances(src)(des) 
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END-THEORY 
 
 
A.6 Hostler 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Represents a hostler. 
 
THEORY HOSTLER 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {TIME-AND-DISTANCE, SLOT, CARGO, 

GEOMETRY, MOVEMENT-REQUEST} 
 
% ---------------------------------------- 
THEORY-TYPES 
 
type hostler-id = fixnum 
type hostler-name = symbol 
type hostler = tuple(id: hostler-id, name: hostler-name) 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function hos-make(id: hostler-id, name: hostler-name): hostler 

= <id, name> 
 
function hos-id(h: hostler): hostler-id 

= h.id 
 
function hos-speed(h: hostler, c: cargo): speed 

= *LOADED-HOSTLER-SPEED* 
 
function hos-unloaded-speed(h: hostler): speed 

= *UNLOADED-HOSTLER-SPEED* 
 
function hos-duration-for-move(h: hostler, mvr: mvr, g: geo): duration 

= add-durations( 
mvr-distance(mvr, g) 

div hos-speed(h, mvr-cargo(mvr)), 
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*TRIP-DURATION-OVERHEAD*) 
 
function hos-duration-for-unloaded-trip(h: hostler, 

src: slot-id, des: slot-id, g: geo) 
: duration 
= geo-distance(g, src, des) 

div hos-unloaded-speed(h) 
 
function hos-duration-for-repositioning(h: hostler, 

mvr1: mvr, mvr2: mvr, g: geo) 
:duration 
= add-durations( 

hos-duration-for-unloaded-trip(h, 
mvr-destination(mvr1), mvr-source(mvr2), g), 

*REPOSITIONING-OVERHEAD*) 
 
function hos-duration-for-move-with-repositioning(h: hostler, 

mvr: mvr, origin: slot-id, g: geo 
): duration 
= add-durations( 

add-durations( 
hos-duration-for-move(h, mvr, g), 

hos-duration-for-unloaded-trip(h, origin, mvr-source(mvr), g)), 
*REPOSITIONING-OVERHEAD*) 
 
END-THEORY 
 
 
A.7 Yard 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Represents a cargo yard: geometry, resources. 
 
THEORY YARD 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {SLOT, HOSTLER, GEOMETRY} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
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type yard = tuple( 
slots: map(slot-id, slot), 
hostlers: map(hostler-id, hostler), 
geometry: geo, 
cached-hostlers: set(hostler), 
number-of-hostlers: fixnum 
) 

 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function y-make(S: set(slot), H: set(hostler), G: geo): yard 

= <{| sl-id(sl) -> sl | (sl: slot) sl in S |}, 
{| hos-id(ho) -> ho | (ho: hostler) ho in H |}, 
G, 
H, 
size(H) 
> 

 
function y-slot-ids(y: yard): set(slot-id) 

= domain(y.slots) 
 
function y-slot(y: yard, s-id: slot-id 
| s-id in y-slot-ids(y) 
): slot 

= y.slots(s-id) 
 
function y-slot-from-name(y: yard, name: slot-name): slot 

= arb(filter(lambda(s: slot) sl-name(s) = name, range(y.slots))) 
 
function y-hostler-ids(y: yard): set(hostler-id) 

= domain(y.hostlers) 
 
function y-hostler(y: yard, h-id: hostler-id 

| h-id in y-hostler-ids(y) 
): hostler 
= y.hostlers(h-id) 

 
function y-hostlers(y: yard): set(hostler) 

= y.cached-hostlers 
 
function y-geometry(y: yard): geo 

= y.geometry 
 
function y-number-of-hostlers(Y: yard): fixnum 

= y.number-of-hostlers 
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END-THEORY 
 
 
A.8 Reservation 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Represents a reservation of a hostler for a cargo item 
% in a schedule. 
 
THEORY RESERVATION 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, TIME-AND-DISTANCE, 
YARD} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
type rvn = tuple(hoslter-id: hostler-id, 

mvr: mvr, 
period: period) 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function rvn-make(h: hostler-id, mvr: mvr, p: period, Y: yard): rvn 

= <h, mvr, p> 
 
function rvn-hostler-id(r: rvn): hostler-id 

= r.hoslter-id 
 
function rvn-mvr(r: rvn): mvr 

= r.mvr 
 
function rvn-period(r: rvn): period 

= r.period 
 
END-THEORY 
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A.9 Schedule 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
THEORY SCHEDULE 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {TIME-AND-DISTANCE, HOSTLER, MOVEMENT-REQUEST, 

RESERVATION, GEOMETRY, YARD, SHIP-MANIFEST} 
 
% ---------------------------------------- 
 
THEORY-TYPE-PARAMETERS {} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
type h-info = tuple(rvns: seq(rvn), 

load: duration, 
closure-time: time, 
closure-slot: slot-id) 

 
type schedule = tuple(hostlers: seq(h-info), 

cached-h-ids: set(hostler-id), 
closure: rvn, 
sum-of-closure-times: time) 

 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function sch-make-empty(n: fixnum): schedule 

= <[<[], 0, 0, undefined> | (i) i in [1 .. n]], 
{}, 
undefined, 
0 
> 

 
function sch-is-empty?(S: schedule): boolean 

= not(defined?(S.closure)) 
 
function sch-hostler-ids(S: schedule): set(hostler-id) 

= S.cached-h-ids 
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function sch-size(S: schedule): fixnum 

= reduce(+, 
image(lambda(h-id) size(S.hostlers(h-id).rvns), 

sch-hostler-ids(S)), 
0) 

 
function sch-sort-reservations(rs: set(rvn)): seq(rvn) 

= sort(rs, lambda(r1: rvn, r2: rvn) is-earlier-time?( 
pd-start(rvn-period(r1)), 
pd-start(rvn-period(r2)))) 

 
function sch-reservations-for-hostler(S: schedule, h-id: hostler-id) 

: set(rvn) 
= seq-to-set(S.hostlers(h-id).rvns) 

 
function sch-ordered-reservations-for-hostler(S: schedule, 

h-id: hostler-id) 
: seq(rvn) 
= S.hostlers(h-id).rvns 

 
function find-preceeding-reservation-aux( 

rvns: seq(rvn), ti: time, l: fixnum, u: fixnum 
): rvn 
= if l=u 

then if l<=size(rvns) then rvns(l) else undefined 
else 

let(m: fixnum = (l+u) div 2) 
if is-earlier-time?(pd-end(rvn-period(rvns(m))), ti) 
then find-preceeding-reservation-aux(rvns, ti, m, u) 
else find-preceeding-reservation-aux(rvns, ti, l, m) 

 
function find-preceeding-reservation(rvns: seq(rvn), ti: time): rvn 

= find-preceeding-reservation-aux(rvns, ti, 1, size(rvns)) 
 
function sch-all-reservations(S: schedule): set(rvn) 

= reduce(union, [ sch-reservations-for-hostler(S, h-id) 
| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S))]) 

 
function sch-add-reservation(S: schedule, r: rvn): schedule 

= let(h-id: hostler-id = rvn-hostler-id(r)) 
let(new-rvns: seq(rvn) = prepend(S.hostlers(h-id).rvns, r), 

new-load: duration = S.hostlers(h-id).load+pd-duration(rvn-period(r)), 
new-closure-time: time = pd-end(rvn-period(r)), 
new-closure-slot: slot-id = mvr-destination(rvn-mvr(r))) 

let(new-closure: rvn = 
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if not(defined?(S.closure)) 
then r 
else if new-closure-time>pd-end(rvn-period(S.closure)) 

then r 
else S.closure, 

new-sum-of-closure-times: time 
= S.sum-of-closure-times 

+ new-closure-time 
- S.hostlers(h-id).closure-time) 
<seq-shadow1(S.hostlers, h-id, 

<new-rvns, new-load, new-closure-time, new-closure-slot>), 
S.cached-h-ids with h-id, 
new-closure, 
new-sum-of-closure-times> 

 
function sch-sum-of-closure-times(S: schedule): time 

= S.sum-of-closure-times 
 
function sch-closure-slot-for-hostler(S: schedule, h-id: hostler-id) 

: slot-id 
= S.hostlers(h-id).closure-slot 

 
function sch-extract-mvrs-from-seq-of-reservations(rs: seq(rvn)) 

: seq(mvr) 
= image(lambda(r:rvn) rvn-mvr(r), rs) 

 
function sch-last-reservation-for-hostler(S: schedule, h-id: hostler-id) 

: rvn 
= first(S.hostlers(h-id).rvns) 

 
function sch-closure-time-for-hostler(S: schedule, h-id: hostler-id) 

: time 
= S.hostlers(h-id).closure-time 

 
function sch-last-reservations(S: schedule): seq(rvn) 

= [ sch-last-reservation-for-hostler(S, h-id) 
| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S)) ] 

 
function sch-closure-reservation(S: schedule): rvn 

= S.closure 
 
function sch-closure-time(S: schedule): time 

= let(r: rvn = sch-closure-reservation(S)) 
if defined?(r) 
then pd-end(rvn-period(r)) 
else 0 
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function sch-rvns-are-successive(S: schedule, r1: rvn, r2: rvn) 

: boolean 
= let(h-id: hostler-id = rvn-hostler-id(r1)) 

h-id = rvn-hostler-id(r2) 
and is-earlier-time?(pd-start(rvn-period(r1)), 

pd-start(rvn-period(r2))) 
and not(ex(r3: rvn)( 

r3 in sch-reservations-for-hostler(S, h-id) 
and is-earlier-time?(pd-start(rvn-period(r1)), 

pd-start(rvn-period(r3))) 
and is-earlier-time?(pd-start(rvn-period(r3)), 

pd-start(rvn-period(r2))) 
)) 

 
function sch-duration-for-hostler(S: schedule, h-id: hostler-id) 

: duration 
= S.hostlers(h-id).load 

 
function sch-total-duration(S: schedule): duration 

= reduce(add-durations, 
[ sch-duration-for-hostler(S, h-id) 
| (h-id) h-id in set-to-seq(sch-hostler-ids(S))], 

0) 
 
END-THEORY 
 
 
A.10 Work Metric 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Metrics on schedules, based on "work done" 
% (i.e., cargo shipped, distance moved). 
% Used for pruning schedules. 
 
THEORY METRIC-WORK 
 
% ---------------------------------------- 
THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, RESERVATION, 
GEOMETRY, YARD, SHIP-MANIFEST, SCHEDULE, TIME-AND-DISTANCE} 
 
% ---------------------------------------- 
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THEORY-TYPES 
type hsec = fixnum 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function load-based-on-hostler(man: manifest, h: hostler, g: geo): hsec 

= man-unloaded-distance(man) 
 
function true-repositioning-cost-for-hostler( 

S: schedule, h-id: hostler-id, Y: yard 
): hsec 
= let(ordered: seq(rvn) = sch-ordered-reservations-for-hostler(S, h-id)) 

let(h: hostler = y-hostler(Y, h-id)) 
reduce(+, 

[ hos-duration-for-repositioning(h, 
rvn-mvr(ordered(i - 1)), rvn-mvr(ordered(i)), y-geometry(Y)) 
| (i: integer) i in [2 .. size(ordered)]], 

0) 
 
function true-total-repositioning-cost(S: schedule, Y: yard): hsec 

= reduce(+, 
 [ true-repositioning-cost-for-hostler(S, h-id, Y) 

| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S)) ], 
0) 

 
function load-cost-for-hostler(S: schedule, h-id: hostler-id): hsec 

= sch-duration-for-hostler(S, h-id) 
 
function total-load-cost(S: schedule): hsec 

= sch-total-duration(S) 
 
function work-cost-for-hostler(S: schedule, h-id: hostler-id): hsec 

= sch-closure-time-for-hostler(S, h-id) 
 
function total-work-cost(S: schedule): hsec 

= sch-sum-of-closure-times(S) 
 
function total-work-cost-precompute(S: schedule, works: seq(hsec)) 

: hsec 
= reduce(+, 

[ works(h-id) 
| (h-id) h-id in set-to-seq(sch-hostler-ids(S))]) 

 
function work*(S: schedule): hsec 
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= let(r: rvn = sch-closure-reservation(S)) 
if defined?(r) 
then pd-end(rvn-period(r)) 
else 0 

 
function work*-precompute(S: schedule, works: seq(hsec)): hsec 

= reduce(lambda(x: hsec, y: hsec) 
if x>=y then x else y, 

[ works(h-id) 
| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S)) ], 

0) 
 
function work*-id(S: schedule): hostler-id 

= arb({h-id | (h-id: hostler-id) h-id in sch-hostler-ids(S) 
and work-cost-for-hostler(S, h-id) = work*(S)}) 

 
function repositioning-cost-for-hostler(S: schedule, h-id: hostler-id) 

: hsec 
= work-cost-for-hostler(S, h-id) - load-cost-for-hostler(S, h-id) 

 
function total-repositioning-cost(S: schedule): hsec 

= total-work-cost(S) - total-load-cost(S) 
 
function schedule-cost(S: schedule, Y: yard): hsec 

= work*(S) * y-number-of-hostlers(Y) 
 
function schedule-cost-precompute(S: schedule, Y: yard, 

works: seq(hsec)): hsec 
= work*-precompute(S, works) * size(y-hostler-ids(y)) 

 
function spare(S: schedule, Y: yard): hsec 

= schedule-cost(S, Y) - total-work-cost(S) 
 
function find-shortest-distances( 

d: slot-id, c: integer, ss: seq(slot-id), g: geo 
): seq(distance) 
= let(sorted: seq(distance) 

= sort([geo-distance(g, d, s) | (s) s in ss], 
lambda(x,y) x<=y)) 

[sorted(i) | (i) i in [1 .. c]] 
 
function find-shortest-distances-for-source( 

s: slot-id, c: integer, dd: seq(slot-id), g: geo 
): seq(distance) 
= let(sorted: seq(distance) 

= sort([geo-distance(g, d, s) | (d) d in dd], 
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lambda(x,y) x<=y)) 
[sorted(i) | (i) i in [1 .. c]] 

 
function repo-lower-bound-from-destinations(S: schedule, 

Y: yard, M: manifest) 
: hsec 

= man-repositioning-lower-bound(M, Y) div *UNLOADED-HOSTLER-SPEED* 
+ *REPOSITIONING-OVERHEAD* 

* (size(man-unloaded(M)) - y-number-of-hostlers(Y)) 
 
function repo-lower-bound(S: schedule, Y: yard, M: manifest): hsec 

= let(d2 = repo-lower-bound-from-destinations(S, Y, M)) 
d2 

 
function find-largest-distances( 

d: slot-id, c: integer, ss: seq(slot-id), g: geo 
): seq(distance) 
= let(sorted: seq(distance) 

= sort([geo-distance(g, d, s) | (s) s in ss], 
lambda(x,y) x>=y)) 

[sorted(i) | (i) i in [1 .. c]] 
 
function predicted-cost-pre-compute-repo( 

S: schedule, Y: yard, M: manifest, repo: distance, load: hsec 
): hsec 
= if man-finished?(M) 

then schedule-cost(S, Y) 
else 

let(w: hsec = total-work-cost(S), 
cost: hsec = schedule-cost(S, Y)) 

let(spare-cost: hsec = cost - w) 
if load+repo > spare-cost 
then cost + load + repo - spare-cost 
else cost 

 
function predicted-cost(S: schedule, Y: yard, M: manifest): hsec 

= predicted-cost-pre-compute-repo(S, Y, M, repo-lower-bound(S, Y, M), 
load-based-on-hostler(M, 

arb(y-hostlers(Y)), y-geometry(Y))) 
 
function lower-bound-for-delta-schedule( 

old-S: schedule, h-id: hostler-id, new-M: manifest, 
Y: yard, repo: distance, load: hsec, 
rvn-h: rvn 
): hsec 
= let(fts-h: time = pd-end(rvn-period(rvn-h))) 
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let(new-closure-time: time 
= greater-i(sch-closure-time(old-S), fts-h)) 

let(new-cost-S: hsec = new-closure-time * y-number-of-hostlers(Y)) 
if man-finished?(new-M) 
then new-cost-S 
else 

let(w: hsec 
= sch-sum-of-closure-times(old-S) 

+ fts-h - sch-closure-time-for-hostler(old-S, h-id)) 
let(spare-cost: hsec = new-cost-S - w) 
if load+repo > spare-cost 
then load + repo + w 
else new-cost-S 

 
END-THEORY 
 
 
A.11 YMS 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Defines the constraints on a feasible hostler schedule. 
 
THEORY YARD-MANAGEMENT-SYSTEM-2 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, RESERVATION, 
GEOMETRY, YARD, SHIP-MANIFEST, SCHEDULE} 
 
% ---------------------------------------- 
 
THEORY-TYPE-PARAMETERS {} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function sch-sequence-of-mvr-refined?(s1: seq(mvr), s2: seq(mvr)) 

: boolean 
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= size(s1) <= size(s2) 
and-then fa(i: fixnum)( i in domain(s1) => s1(i) = s2(i) ) 

 
function schedule-refined?(S1: schedule, S2: schedule): boolean 

= sch-hostler-ids(S1) subset sch-hostler-ids(S2) 
and-then fa(h-id: hostler-id) 

(h-id in sch-hostler-ids(S1) 
=> sch-sequence-of-mvr-refined?( 

sch-extract-mvrs-from-seq-of-reservations( 
sch-ordered-reservations-for-hostler(S1, h-id)), 

sch-extract-mvrs-from-seq-of-reservations( 
sch-ordered-reservations-for-hostler(S2, h-id))) 

) 
 
function order-respected?(S: schedule, man: manifest): boolean 

= fa(r1: rvn, r2: rvn) 
(r1 in sch-all-reservations(S) 

and r2 in sch-all-reservations(S) 
=> man-mvr-less?(man, rvn-mvr(r1), rvn-mvr(r2)) 

=> is-earlier-time?(pd-end(rvn-period(r1)), 
pd-end(rvn-period(r2))) 
) 

 
function feasible-resources?(S: schedule, Y: yard): boolean 

= sch-hostler-ids(S) subset y-hostler-ids(Y) 
 
function feasible-durations?(S: schedule, Y: yard): boolean 

= fa(r: rvn)(r in sch-all-reservations(S) 
=> is-shorter-duration?( 

hos-duration-for-move( 
y-hostler(Y, rvn-hostler-id(r)), 

rvn-mvr(r), 
y-geometry(Y)), 

pd-duration(rvn-period(r))) 
) 

 
function feasible-separations?(S: schedule, Y: yard): boolean 

= fa(r1: rvn, r2: rvn)( 
r1 in sch-all-reservations(S) 

and r2 in sch-all-reservations(S) 
and sch-rvns-are-successive(S, r1, r2) 
=> is-later-time?( 

pd-start(rvn-period(r2)), 
add-duration-to-time( 

pd-end(rvn-period(r1)), 
hos-duration-for-repositioning( 
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y-hostler(Y, rvn-hostler-id(r1)), 
rvn-mvr(r1), 
rvn-mvr(r2), 
y-geometry(Y)))) 

) 
 
function YMS-Schedule(Y: yard, man: manifest | true) 

returns (S: schedule 
| order-respected?(S, man) 
& feasible-durations?(S, Y) 
& feasible-separations?(S, Y) 
& feasible-resources?(S, Y) 
) 

 
END-THEORY 
 
 
A.12 Global Search with Pruning 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Theory for global search with pruning. 
 
THEORY SCHED-GS-PRUNING 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, RESERVATION, 
GEOMETRY, YARD, SHIP-MANIFEST, SCHEDULE, 
YARD-MANAGEMENT-SYSTEM-2, SCHED-TESTER, 
SCHED-GREEDY-APPEND-FOR-EARLIEST-MVR-FINISH} 
 
% ---------------------------------------- 
 
THEORY-TYPE-PARAMETERS {} 
 
% ---------------------------------------- 
 
THEORY-TYPES 
var *tree-size*: fixnum = 0 
var *leaf-size*: fixnum = 0 
var *lb*: hsec = 999999 
var *opt*:real = 2.0 
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var answer: schedule = undefined 
 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function fts(S: schedule, Y: yard, h-id: hostler-id, mvr: mvr, 

lower-bound: time, mvr-duration: duration) 
: time 
= let(close:time = 

if h-id in sch-hostler-ids(S) 
then sch-closure-time-for-hostler(S, h-id) 

+ mvr-duration 
+ geo-distance(y-geometry(Y), 

sch-closure-slot-for-hostler(S, h-id), 
mvr-source(mvr)) 

div *UNLOADED-HOSTLER-SPEED* 
+ *REPOSITIONING-OVERHEAD* 

else add-duration-to-time(*EARLIEST-TIME*, mvr-duration)) 
if is-later-time?(lower-bound, close) 

then lower-bound 
else close 

 
function find-latest-reservation-of-lower-rank-aux( 

rvns: seq(rvn), man: manifest, m: mvr, l: fixnum 
): rvn 
= if l>size(rvns) then undefined 

elseif man-mvr-less?(man, rvn-mvr(rvns(l)), m) 
then rvns(l) 
else find-latest-reservation-of-lower-rank-aux(rvns, man, 

m, l+1) 
 
function find-latest-reservation-of-lower-rank( 

rvns: seq(rvn), man: manifest, m: mvr 
): rvn 
= find-latest-reservation-of-lower-rank-aux(rvns, man, m, 1) 

 
function find-latest-reservation-of-lower-rank-for-hostler( 

S: schedule, h-id: hostler-id, man: manifest, m: mvr 
): rvn 
= let(rvns: seq(rvn) 

= sch-ordered-reservations-for-hostler(S, h-id)) 
find-latest-reservation-of-lower-rank(rvns, man, m) 

 
function find-latest-reservations-of-lower-rank( 

S: schedule, man: manifest, m: mvr 
): seq(rvn) 
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= [ r | (r: rvn, h-id: hostler-id) 
h-id in set-to-seq(sch-hostler-ids(S)) 

& r = find-latest-reservation-of-lower-rank-for-hostler(S, h-id, man, m) 
& defined?(r) ] 
 
function make-new-schedule-for-hostler( 

S: schedule, mvr: mvr, h-id: hostler-id, Y: yard, M: manifest, 
earliest-end: time, mvr-duration: duration 
): schedule 
= let(fts-h = fts(S, Y, h-id, mvr, earliest-end, mvr-duration)) 

let(rvn-h = rvn-make(h-id, 
mvr, 
pd-make-from-times( 

fts-h - mvr-duration, 
fts-h), 

Y)) 
let(new-S = sch-add-reservation(S, rvn-h)) 
new-S 

 
function gs-aux(S: schedule, M: manifest, Y: yard, 

opt-factor: real, depth: fixnum) 
: schedule 
= *tree-size* <- *tree-size* + 1; 

if man-finished?(M) 
then (*leaf-size* <- *leaf-size* + 1; 

if schedule-cost(S, Y)<*lb* 
then (*lb* <- schedule-cost(S, Y); 

print([*tree-size*, *lb*]); 
S) 

else undefined 
) 

else 
let(mvr-choice: mvr = arb(man-head(M))) 
let(manifests: manifest 

= man-mark-mvr-loaded(M, mvr-choice)) 
let(repos: hsec = repo-lower-bound(S, Y, manifests)) 
let(pre-mvrs: seq(rvn) 

= find-latest-reservations-of-lower-rank(S, M, mvr-choice)) 
let(earliest-end: time = 

max-seq-i(append([pd-end(rvn-period(pre-mvrs(i))) 
| (i) i in domain(pre-mvrs)], 

*EARLIEST-TIME*))) 
let(mvr-duration: duration 

= mvr-distance(mvr-choice, y-geometry(Y)) div *LOADED-HOSTLER-SPEED* 
+ *TRIP-DURATION-OVERHEAD*) 

let(loads: hsec 
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= load-based-on-hostler(manifests, arb(y-hostlers(Y)), y-geometry(Y))) 
let(rvns: map(hostler-id, rvn) 

= {| h-id -> r | (h-id: hostler-id, r: rvn, fts-h: time) 
h-id in set-to-seq(y-hostler-ids(Y)) 

& fts-h = fts(S, Y, h-id, mvr-choice, earliest-end, mvr-duration) 
& r = rvn-make(h-id, mvr-choice, 
pd-make-from-times(fts-h - mvr-duration, fts-h), 
Y) |}) 
let(lower-bounds: seq(tuple(mvr, hostler-id, hsec)) = 

sort([ <mvr-choice, h-id, lower-bound> 
| (h-id: hostler-id, lower-bound: hsec, 

new-M: manifest) 
h-id in set-to-seq(y-hostler-ids(Y)) 

& h-id <= depth 
& new-M = manifests 
& lower-bound = 

lower-bound-for-delta-schedule( 
S, h-id, new-M, Y, repos, loads, rvns(h-id)) 

], 
lambda(smc1: tuple(mvr, hostler-id, hsec), 

smc2: tuple(mvr, hostler-id, hsec)) 
smc1.3<=smc2.3)) 

let(schedules: seq(tuple(schedule, hsec)) = 
[<new-S, cost> 

| (smc: tuple(mvr, hostler-id, hsec), 
h-id: hostler-id, lower-bound: hsec, 
new-S: schedule, cost: hsec) 

smc in lower-bounds 
& h-id = smc.2 & lower-bound = smc.3 
& new-S = (if lower-bound<*lb* * opt-factor 

then gs-aux(sch-add-reservation(S, rvns(h-id)), 
manifests, Y, opt-factor, depth+1) 

else (*tree-size* <- *tree-size* + 1; 
undefined)) 

& defined?(new-S) 
& cost = if defined?(new-S) 

then schedule-cost(new-S, Y) 
else undefined 

]) 
let(optimum: tuple(schedule, hsec) = 

if not(empty(schedules)) 
then reduce(lambda(sm1: tuple(schedule, hsec), 

sm2: tuple(schedule, hsec)) 
if sm1.2<=sm2.2 

then sm1 else sm2, 
schedules) 
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else <undefined, undefined>) 
optimum.1 

 
function gs(M: manifest, Y: yard, opt: real): schedule 
 = gs-aux(sch-make-empty(size(y-hostlers(Y))), M, Y, 
      1.0/(1.0 + opt/100.0), 1) 
 
function test-schedule(opts: seq(real)) 
 = let(Y = construct-yard()) 
   let(M = construct-manifest(Y)) 
   let(initial: schedule 
     = greedy-append-for-earliest-mvr-finish(M, Y)) 
   let(lb = schedule-cost(initial, Y)) 
   image(lambda(opt: real) 
     (*lb* <- lb; 
     *tree-size* <- 0; 
     *leaf-size* <- 0; 
     answer <- gs(M, Y, opt); 
     (if defined?(answer) 
      then print([ 
lb, 
real-to-nearest-integer(opt), *tree-size*, *leaf-size*, 
schedule-cost(answer, Y), 
total-load-cost(answer), 
true-total-repositioning-cost(answer, Y), 
total-repositioning-cost(answer) 

- true-total-repositioning-cost(answer, Y), 
spare(answer, Y)]) 

else print([lb, real-to-nearest-integer(opt), 
*tree-size*, *leaf-size*, undefined])); 

print(""); 
undefined), 
opts) 

 
END-THEORY 
 
 
A.13 Greedy Heuristic Scheduler 
 
 
!! in-package("RE") 
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar) 
 
% Theory for greedy heuristic scheduler 
% based on earliest finishing time. 
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THEORY SCHED-GREEDY-APPEND-FOR-EARLIEST-MVR-FINISH 
 
% ---------------------------------------- 
 
THEORY-IMPORTS {TIME-AND-DISTANCE, CARGO, SLOT, GEOMETRY, 

MOVEMENT-REQUEST, HOSTLER, SHIP-MANIFEST, YARD, 
RESERVATION, SCHEDULE, YARD-MANAGEMENT-SYSTEM-2, SCHED-
TESTER, METRIC-WORK} 

 
% ---------------------------------------- 
 
THEORY-OPERATIONS 
function separation-time(Y: yard, h-id: hostler-id, 

mvr1: mvr, mvr2: mvr) 
: duration 

= hos-duration-for-repositioning(y-hostler(Y, h-id), 
mvr1, mvr2, y-geometry(Y)) 

 
function duration-for-mvr(Y: yard, h-id: hostler-id, mvr: mvr) 

: duration 
= hos-duration-for-move(y-hostler(Y, h-id), mvr, y-geometry(Y)) 

 
function duration-for-move-with-repositioning(Y: yard, h-id: hostler-id, 

mvr1: mvr, mvr2: mvr): duration 
= hos-duration-for-move-with-repositioning(y-hostler(Y, h-id), 

mvr2, mvr-destination(mvr1), y-geometry(Y)) 
 
function fts1(S: schedule, Y: yard, h-id: hostler-id, mvr: mvr, 

lower-bound: time) 
: time 
= let(close:time = 

if h-id in sch-hostler-ids(S) 
then add-duration-to-time( 

sch-closure-time-for-hostler(S, h-id), 
duration-for-move-with-repositioning( 

Y, h-id, 
rvn-mvr(sch-last-reservation-for-hostler(S, h-id)), 
mvr)) 

else add-duration-to-time( 
*EARLIEST-TIME*, 
duration-for-mvr(Y, h-id, mvr)) 
) 

if is-later-time?(lower-bound, close) then lower-bound else close 
 
function greedy-append-for-earliest-mvr-finish-aux( 
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S: schedule, M: manifest, Y: yard 
): schedule 
= if man-finished?(M) 

then S 
else 

let(mvr*: mvr = arb(man-head(M))) 
let(pre: set(rvn) 

= seq-to-set(find-latest-reservations-of-lower-rank(S, M, mvr*))) 
let(earliest-end: time 

= max-i({pd-end(rvn-period(rvn)) | (rvn: rvn) rvn in pre} 
with *EARLIEST-TIME*)) 
let(fts*: time = min-i({fts1(S, Y, h-id, mvr*, earliest-end) 

| (h-id:hostler-id) h-id in y-hostler-ids(Y)})) 
let(h-id*: hostler-id 

= arb({h-id | (h-id: hostler-id) h-id in y-hostler-ids(Y) 
and fts1(S, Y, h-id, mvr*, earliest-end) = fts*})) 

let(rvn*: rvn = rvn-make(h-id*, 
mvr*, 
pd-make-from-times( 

subtract-duration-from-time(fts*, 
duration-for-mvr(Y, h-id*, mvr*)), 

fts*), 
Y)) 

let(new-S: schedule = sch-add-reservation(S, rvn*), 
new-M: manifest = man-mark-mvr-loaded(M, mvr*)) 

greedy-append-for-earliest-mvr-finish-aux(new-S, new-M, Y) 
function greedy-append-for-earliest-mvr-finish(M: manifest, Y: yard) 

: schedule 
= let (empty-sch = sch-make-empty(size(y-hostlers(Y)))) 

greedy-append-for-earliest-mvr-finish-aux(empty-sch, M, Y) 
 
END-THEORY 
 


